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Abstract

An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired

region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive
method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given

by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight

function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight

function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as

curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and

to prevent surface geometric errors, we use the Naghdi�s shell theory and express the shell surface by a B-spline patch. In

addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh

distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the

error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh

generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the

numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by

considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a

reliable mesh adaptation method after a parameter value in the weight function is properly chosen.

� 2004 Elsevier Inc. All rights reserved.

Keywords: r-Adaptivity; Shell finite element analysis; Naghdi�s shell; B-spline surface

1. Introduction

Three sources generate computational errors in a finite element solution and these sources are discret-
ization, quadrature, and discrete-solution errors. The discretization error arises because the solution is

approximated by piecewise polynomials; the quadrature error because the integrals arising in the Galerkin

formulation are evaluated by numerical quadrature; and discrete-solution error because the resulting dis-

crete systems are solved only approximately. It is natural to try to diminish the total computation error
*Corresponding author. Tel.: +82-2-880-1693; fax: +82-2-886-1693.

E-mail address: mhcho@snu.ac.kr (M. Cho).

0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.02.007

mail to: mhcho@snu.ac.kr


292 M. Cho, S. Jun / Journal of Computational Physics 199 (2004) 291–316
from the above-mentioned three sources. The key factors of any computational method are reliability and

efficiency. Reliability indicates that the computational error should be controlled on a given tolerance level.

Efficiency requires that the computational work to compute a solution within the given tolerance is es-
sentially as small as possible. But efficiency and reliability are contrary to each other.

Mesh-adaptive methods are used to decrease the error of finite element analyses. In engineering practice, it

is impossible to assess the quality of the finite element solution without applying the mesh-adaptive method.

Also, mesh-adaptive methods are useful for reducing the computational cost of large-scaled structures. In

general, we can classify a mesh-adaptive method into h-, p-, and r-adaptive method. Methods to improve the

quality of the discretization such as h-adaptivity or the local solution using p-adaptivity increase the cost of

the solution. While these methods may be acceptable in final engineering analysis and model verification, it is

undesirable when calculating the engineering response of prototypes in the design space. The r-adaptive
method technique does not increase the computational cost of obtaining a solution since it introduces no new

additional nodes and does not increase the degree of the element basis functions. This characteristic of the r-
adaptive method makes it ideal for performing analyses on model prototypes that require a coarse mesh to

improve performance and require a sufficiently accurate analysis to make valid design decision.

There are several works on mesh generation [1–4] and its application to finite element method [5–11]. For

instance, Riccius et al. [9] proposed the adaptive mesh refinement procedure for shell problems with in-

tersections. They reduced error by combining mesh refinement and smoothing. Also, Ara�ujo et al. [10]

introduced the h-adaptive strategy for elastic–plastic two-dimensional finite element analysis. They gen-
erated a mesh by using the spatial decomposition technique and used an effective stress and a ratio of plastic

work as a posteriori error estimation. Askes and Rodr�igues-Ferran [11] splitted the domain under con-

sideration into two subdomains to which the r-adaptive and h-adaptive strategies were applied, respectively.
Recently, Huang and co-workers [12] developed an r-adaptive finite element method based on moving mesh

PDEs and defined the error indicator using a local spatial approximation error. Also, Huang proposed

several criteria for mesh adaptation based on an error function [13,14].

In the present work, the moving grid technique through cell volume deformation proposed by Liao and

co-workers [15,16] is implemented for shell finite element problems. If a conventional degenerated solid
shell element is used, geometrical error is generated by curvature and mesh distortion errors. The effect of

mesh distortion and surface curvature errors is mixed in this case. The surface geometric error in the coarse

mesh will be magnified if isoparametric interpolation is used for the surface representation. Both mesh

distortion and curvature errors need to be controlled in the r-adaptivity strategy. Thus, r-adaptivity cannot

be applied efficiently to shell analysis in relatively coarse mesh configurations with degenerated shell ele-

ments. On the other hand, if we can employ a high performance shell element that is relatively insensitive to

mesh distortion and has geometrically exact nature, the r-adaptivity can be effectively applied. Thus, in the

present study, we employ a high performance nine-noded Naghdi shell element, which was developed by
Cho and Roh [17] and to accurately compute the surface geometry, B-spline surface tensor patch was used.

r-Adaptivity is performed to normalize the value of the stress error estimation of elements.

The r-adaptivity schemestarts fromthe initial uniformgrid.Theadjustedmeshdependsupon theweightingof

the estimated stress error of elements in the initial mesh configuration. Elements will shrink if their stress error is

relatively large compared to thoseofotherelementsand theywillbeexpanded if the stresserror is relatively small.

The rest of the paper is organized as follows. In Section 2, the cell volume deformation mapping pro-

posed by Liao and Anderson is presented and a simple example is used to illustrate the simplicity of the

present r-method. In Section 3, Naghdi�s shell theory is presented briefly, and an assumed partial mixed
strain-based variational functional is provided for nine-noded finite element shell formulations. In Section

4, a B-spline surface is introduced to approximate the geometrically exact shell surface. Several numerical

examples are followed in Section 5. In particular, the weight function (considering both stress error and

mesh distortion) is modified to apply cell volume deformation mapping to shell finite element analysis of a

general shell surface. Finally, conclusions are given in Section 6.
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2. Deformation cell mapping

In this section, we outline the cell volume deformation mapping of Liao and Anderson. This scheme was
first introduced by Moser [18] in 1965 and Liao [15,16] applied this to grid-generation problems in 1991.

Mesh generation has the problem of grid tangling, which occurs when the grid-generation transformation is

not one-to-one. Cell volume deformation addresses problems of grid tangling by imposing certain re-

strictions in the formulation of a grid-generation transform to ensure that the transform is one-to-one. The

grid-generation transform scheme is given as follows.

Let X � R2 be a bounded region with smooth boundary oX and f ð~xÞ be a smooth weight function in X
such that f ð~xÞ > 0 : X ! R satisfiesZ

X

1

f

�
� 1

�
dX ¼ 0; ð1Þ

where dX is the area element. Find a one-to-one and onto transformation ~/ : X ! X which satisfies

detr~/ð~xÞ ¼ f ð~/ð~xÞÞ; ~x 2 X;

~/ð~xÞ ¼~x; ~x 2 oX:
ð2Þ

In the above transformation,~x are the coordinates of an initial grid and ~/ are the coordinates of the new

adapted grid. The function f ð~/ð~xÞÞ is the transformation Jacobian, or in other words, the cell size of the

new grid. Hence, the solution of the problem specifies the cell size distribution according to the location
~/ð~xÞ of the new grid cells. That is, if X is computational mesh domain, the transformation ~/ contracts

elements where f is small, and expands elements where f is large.

Liao and Anderson [15] give the following method to construct ~/ which satisfies (2).

Step 1. Construct a vector field~v : X ! R2 where the velocity~vð~xÞ,~x 2 X is applied to each node.~vð~xÞ must

satisfy the linearized equation

div~vð~xÞ ¼ 1

f ð~xÞ � 1; ~x 2 X; ð3Þ

with Neumann boundary conditions

~n �~vð~xÞ ¼ 0; ~x 2 oX; ð4Þ

~n is the outward normal on the boundary oX.
Step 2. The construction of a solution~v of Eq. (3) is followed. Let g ¼ ð1=f Þ � 1. For a two-dimensional

shell surface (¼ ð0; 1Þ � ð0; 1Þ), let

Gð~xÞ ¼ Gðx1; x2Þ ¼
Z x1

0

gðt; x2Þdt ð5Þ

for x1; x2 2 ½0; 1�. Note that

Gð0; x2Þ ¼ Gðx1; 0Þ ¼ Gðx1; 1Þ ¼ 0 ð6Þ

since

g ¼ 0 on oX: ð7Þ

Also, note that

Z 1

0

Gð1; x2Þdx2 ¼
Z 1

0

Z 1

0

gðx1; x2Þdx1 dx2 ¼ 0 ð8Þ
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sinceZ
X
f ð~xÞdx1 dx2 ¼ 1: ð9Þ

Next, we construct a C1 function h on ½0; 1� such that

hð0Þ ¼ h0ð0Þ ¼ h0ð1Þ ¼ 0; hð1Þ ¼ 1: ð10Þ

Now, we set

v1ðx1; x2Þ ¼
Z x1

0

gðt; x2Þdt � hðx1Þ
Z 1

0

gðt; x2Þdt;

v2ðx1; x2Þ ¼ h0ðx1Þ
Z x2

0

Z 1

0

gðt; sÞdtds:
ð11Þ

Then, letting~v ¼ ðv1; v2Þ, we have

div~v ¼ g ¼ 1

f
� 1: ð12Þ

To make~v formally symmetric, we first interchange x1 and x2 in (11), then we take the average. Thus, the

perturbation vector of the symmetric problem is given as,

v1ðx1; x2Þ ¼
1

2

Z x1

0

gðt; x2Þdt
�

� hðx1Þ
Z 1

0

gðt; x2Þdt þ h0ðx2Þ
Z x1

0

Z 1

0

gðs; tÞdtds
�
;

v2ðx1; x2Þ ¼
1

2

Z x2

0

gðx1; tÞdt
�

� hðx2Þ
Z 1

0

gðx1; tÞdt þ h0ðx1Þ
Z x2

0

Z 1

0

gðt; sÞdtds
�
:

ð13Þ

Step 3. Solve, at a fixed~x 2 X, the deformation equation

d

dt
~uð~x; tÞ ¼~gð~uð~x; tÞ; tÞ; 06 t6 1;

~uð~x; 1Þ ¼~x;
ð14Þ

where t is an artificial time parameter and the deformation vector field ~g is defined by

~gð~uð~x; tÞ; tÞ ¼ ~vð~uð~x; tÞÞ
ft þ ð1� tÞgð~uð~x; tÞÞg : ð15Þ

The deformation moves the grid on X using velocity ~vð~xÞ. We choose an explicit fourth-order Runge–

Kutta method for a solution of the system equation (14) and (15).
Step 4. Set

~/ð~xÞ ¼ ~uð~x; 0Þ: ð16Þ

Then ~/ satisfies Eq. (3) and gives a non-degenerative grid-generating transform. ~/ð~xÞ represents the final
position obtained via the deformation of the node at point~x. The organization of the adaptive strategy is

represented by the flow chart in Fig. 1.

We demonstrate a deformation example to show the simplicity of the above method. An initial uniform

mesh has 30� 30 grid points, and we want to construct a coordinate transformation ~/ : X ! X such that

the adapted grid concentrates around the points with the radii R ¼ f0; 0:25; 0:5g. The nodes are deformed

to a new grid with the following prescribed cell sizes:



Fig. 1. Flow chart of deformation cell mapping.
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1

f ð~xÞ ¼ f1þ cosð8p� Rð~xÞÞg;

Rðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � 0:5ð Þ2 þ x2 � 0:5ð Þ2

q
:

ð17Þ

Fig. 2 shows the magnitude of the weight function of the analytically evaluated 1=f in the domain

X ¼ ð0; 1Þ � ð0; 1Þ. Fig. 3 shows the initial uniformmesh and the final adjusted mesh after the transformation

of volume deformation in the domain. It can be observed in Fig. 3 that the grid cell size is much smaller
around the points R ¼ f0; 0:25; 0:5g. Thus, the grid points aggregate in the small circle with high density.

The cell volume deformation can be applied on an L-shape domain [19,20]. Based on the weighting

distribution in Fig. 2, the cell volume deformation is applied on an L-shape domain. In this case, we must

modify the weight function defined from Eq. (17) because it does not satisfy Eq. (1):

1

f ð~xÞ ¼ C � 1
n

þ cosð8p� Rð~xÞÞ
o
; ð18Þ

where C is a normalizing factor for the condition of weighting function as mentioned in Eq. (1). Fig. 4

shows the initial mesh and the adjusted mesh configuration on the L-shape region. As shown in Fig. 4(b),
we can obtain the adjusted mesh configuration similar to the one in Fig. 3(b).

The adjusted mesh generated by the deformation is not folded by the existence and uniqueness theorem

of ordinary differential equation, which is given in Eq. (14). These examples show that the adjusted mesh

yields the desired cell size characterized by the function f .
The proposed r-adaptive process needs not to be started from a uniform initial configuration. The

process can be started from a distorted mesh configuration. But we does not use non-uniform mesh as the

starting mesh configuration because non-uniform mesh requires extra integration effort in calculating

perturbation vector given in Eq. (11) or Eq. (13) and in calculating numeric finite difference.
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Fig. 2. Magnitude of the weight function for cell volume deformation example.
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Fig. 3. (a) Initial uniform mesh and (b) adjusted mesh applied to cell volume deformation mapping on an unit square domain.
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Fig. 4. (a) Initial uniform mesh and (b) adjusted mesh applied to cell volume deformation mapping on an L-shape domain.
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3. Naghdis shell finite element

We employ Naghdi�s shell finite element in the general curved coordinates. The element is based on the

consistent first order shear deformable shell theory and the developed finite element has the geometrically

exact nature. Thus, the numerical error sources are the numerical integration error and shape function

approximation error. Mesh distortion effect results in quadrature errors only and does not have any in-

fluence on the pointwise curvature computations because the surface is accurately expressed by B-spline

patch representation. The Naghdi�s shell theory is outlined in this section and a partial mixed variational
functional with independent strain measures is provided for nine-noded finite element shell formulations to

reduce the locking phenomena. The detailed derivation can be founded in [17].
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3.1. Kinematics of deformation and energy functional of Naghdi’s shell

The kinematics of deformation of Naghdi�s shell is summarized. In the convected coordinate system, the
in-plane strain tensors are expressed as

Eab ¼ 1
2
g0ab
�

� gab
�
: ð19Þ

To derive the strain tensors in terms of the undeformed surface tensors, deformed quantities are expressed

in terms of the undeformed. The position vector ~R is given as

~R ¼~r þ h3~a3 ð20Þ

and the corresponding covariant basis vectors are

~ga ¼
o~R
oha

¼ o

oha
ð~r þ h3~a3Þ ¼~aa � bca~ach

3; ð21Þ

where ~aa ¼~r;a and bca are the tangent to the surface coordinate curve and the mixed curvature tensor

components, respectively. The surface metric tensor and curvature tensor components are given as:

gab ¼~ga �~gb;
aab ¼~aa �~ab;
bab ¼ �~aa �~a3;b ¼~a3 �~aa;b;
bab ¼ bcbaac:

ð22Þ

Thus tangent surface strain tensors are

Eab ¼ 1
2
ðg0ab � gabÞ ¼ 1

2
ða0ab � aabÞ � ðb0ab � babÞh3 þ 1

2
ðb0alb

0l
b � balb

l
bÞðh

3Þ2: ð23Þ

It is assumed that Eab is linear through the thickness h3. Eab is expressed simply as follows and it can be

found in [21,22]:

Eab ffi eab þ h3xab;

eab ¼ 1
2
ða0ab � aabÞ;

xab ¼ �ðb0ab � babÞ:
ð24Þ

Similarly, the transverse shear measure can be obtained as

ca ¼ 2E3a ¼ ðg0a3 � ga3Þ: ð25Þ

In the Naghdi�s shell model, it is assumed that the transverse shear measure ca is constant through the

thickness h3. Starting from Eqs. (24) and (25), we obtain the membrane, bending, and shear measures in
terms of displacement, surface metric, and curvatures as follows:

eab ¼ 1
2
ðuajjb þ ubjja � 2babwÞ;

xab ¼ 1
2
wajjb
h

þ wbjja � bkaðukjjb � bkbwÞ � bkbðukjja � bkawÞ
i
;

ca ¼ 2E3a ¼ ðw;a þ wa þ bkaukÞ;

ð26Þ

where jj means covariant derivative in two-dimensional shell space.
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From the virtual work principle of Naghdi�s shell theory,

U ¼ 1

2

Z
V
sijðEklÞEijdV ffi

Z
X

Z h=2

�h=2

1

2
sabEab

�
þ sa3Ea3

� ffiffiffi
a

p
dh3 dh1 dh2; ð27Þ

where a is the determinant of the metric tensor aab. sij is the contravariant component of the stress tensor.

Using linear elastic constitutive equations:

sab ¼ BabclEcl;

sa3 ¼ Ba3b3Eb3:
ð28Þ

The plane stress constitutive equations for homogeneous linear elastic isotropic materials are given in terms

of the metric tensor of the shell mid surface for thin shells:

Babkl ¼ E
2ð1þ mÞ aakabl

�
þ aalabk þ 2m

1� m
aabakl

�
;

B3a3b ¼ E
2ð1þ mÞ a

ab;

ð29Þ

where E is Young�s modulus and m is the Poisson�s ratio.
Then, the elastic strain energy of the Naghdi�s shell is given as,

U ¼ 1

2

Z
X

Babclheabecl

�
þ h3

12
Babclxabxcl þ Ba3b3hcacb

� ffiffiffi
a

p
dh1 dh2: ð30Þ
3.2. Hellinger–Reissner partial mixed variational formulation

In the present study, the Hellinger–Reissner partial mixed functional for the development of a shell el-

ement is employed so that the locking phenomena can be avoided. However, the Hellinger–Reissner func-

tional for full strain and displacement fields provides a large-sized matrix inversion in each element for an

assumed strain method. Cho and Roh [17] proposed the framework of partial mixed variational functional

to prevent inefficient locking and constructed an independent transverse shear measure and membrane
measure as variational strain parameters. The expression of the partial mixed functional is given as:

PP eab; ca; ua;w;wa

� 	
¼
Z
X
Babclheab12 ucjjl

�
þ uljjc � 2blcw

� ffiffiffi
a

p
dh1 dh2

þ
Z
X
Ghaabca w;b

�
þ wb þ bkbuk

� ffiffiffi
a

p
dh1 dh2

� 1

2

Z
X
Babclheabecl

ffiffiffi
a

p
dh1 dh2 � 1

2

Z
X
Ghaabcacb

ffiffiffi
a

p
dh1 dh2

þ 1

2

Z
X
Babcl h

3

12

1

2
wajjb
�


þ wbjja � bkbbkaw� bkabkbw� bkaukjjb � bkbukjja
��

� 1

2
wcjjl
�


þ wljjc � bkcbklw� bklbkcw� bkcukjjl � bklukjjc
�� ffiffiffi

a
p

dh1 dh2

�
Z
X

pauað þ pwÞ
ffiffiffi
a

p
dh1 dh2: ð31Þ

Finite element discretizations are performed and the discretized functional is given as the following sym-

bolic form:
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Pp ~d;~a;~b
� �

¼ � 1

2

Z
X

~aTPT
1DmP1~a

ffiffiffi
a

p
dh1 dh2 þ

Z
X

~aTPT
1DmBm

~d
ffiffiffi
a

p
dh1 dh2

þ 1

2

Z
X

~dTBT
bDbBb

~d
ffiffiffi
a

p
dh1 dh2 � 1

2

Z
X

~bTPT
2DcP2

~b
ffiffiffi
a

p
dh1 dh2

þ
Z
X

~bTPT
2DcBc

~d
ffiffiffi
a

p
dh1 dh2 �~dT �~f ¼ 1

2
~dTKb

~d � 1

2
~aTHm~aþ~aTGm

~d

� 1

2
~bTHc

~bþ~bTGc
~d �~dT �~f ; ð32Þ

where

Kb ¼
Z
X
BT

bDbBb
ffiffiffi
a

p
dh1 dh2; ð33Þ
Hm ¼
Z
X
PT

1DmP1

ffiffiffi
a

p
dh1 dh2; ð34Þ
Gm ¼
Z
X
PT

1DmBm
ffiffiffi
a

p
dh1 dh2; ð35Þ
Hc ¼
Z
X
PT

2DcP2

ffiffiffi
a

p
dh1 dh2; ð36Þ
Gc ¼
Z
X
PT

2DcBc

ffiffiffi
a

p
dh1 dh2; ð37Þ

where~f is the element nodal vector and~d is the nodal displacement vector. The column vectors~a and~b are

membrane and shear strain parameters, respectively.
4. Shell with B-spline surfaces

This section presents the definition, important properties and manipulations of B-spline surface [23,24]

which are to generate general surfaces of the shells. They can provide geometrically exact and CAD-gen-

erated free-form surface representations. The free-form surfaces by B-spline are employed to model the

shell surfaces geometrically in the present study.

A B-spline curve is defined by the following equation:

CðtÞ ¼
Xn
i¼0

Ni;pðtÞPi; ð38Þ

where Ni;pðtÞ are B-spline basis functions, Pi are vectors composed of x; y; z coordinates of the control points,
p(degree + 1) is the order of a B-spline curve, and ½t0; t1; t2; . . . ; tnþp� is the knot vector which specifies the

distribution of the parameter t along the curve. The relationship between the order of the curve p, the
number of control points nþ 1, and the number of knots mþ 1 is given by

m ¼ nþ p: ð39Þ

B-spline basis functions Ni;pðtÞ are also called B-spline blending functions and are defined by
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Ni;1ðtÞ ¼
1 if ti 6 t < tiþ1;
0 otherwise;



ð40Þ
Ni;pðtÞ ¼
t � ti

ttþpþ1 � ti
Ni;p�1ðtÞ þ

tiþp � t
ttþp � tiþ1

Niþ1;p�1ðtÞ: ð41Þ

The interval ½ti; tiþ1� is called the ith knot span. A knot vector is non-periodic if the first and last knots

are repeated with multiplicity p þ 1, T ¼ ft0; . . . ; t0; tpþ1; . . . ; tn�p�1;tn; . . . ; tng. For most practical appli-

cations, t0 ¼ 0 and tn ¼ 1. Further, a knot vector is called uniform if the knots are equally spaced.

Otherwise, the knot vector is non-uniform. Non-uniform knot vectors offer greater flexibility for various

design application.

B-spline curves have nice properties suitable for computer aided geometric design. These properties can
be generalized as, affine invariance, convex hull, and local control properties.

As an extension of a parametric B-spline curve, a biparametric B-spline surface can be defined as the

tensor product of B-spline curves. A ðp � qÞth order B-spline surface is defined as follows:

Sðu; vÞ ¼
Xm
i¼0

Xn
j¼0

Vi;jMj;qðvÞNi;pðuÞ up�1

�
6 u6 umþ1; vp�1 6 v6 vnþ1

	
; ð42Þ

where ðmþ 1Þ � ðnþ 1Þ control points Vi;j build up the control net in 3D, and Ni;pðuÞ;Mi;qðvÞ are the B-

spline basis functions of order p and q in the u and v directions, respectively.
5. Numerical examples

In this section, we present the results of several numerical computations performed for sample problems

using the method of deformation cell mapping described in Section 2. The models for the benchmark

problems are cylinder, hemisphere, and torus, which are approximated by B-spline function. The weight

functions of the examples are the values of pointwise stress error estimation. The stress error can be reduced

by moving the nodes of the mesh. We consider the value of the stress error estimation as the weight function

of the cell deformation mapping. But, in general, the weight function does not satisfy Eq. (1). Thus it is
modified in the following form:

gð~xÞ ¼ 1

f ð~xÞ � 1 ¼ Cs � Klocal

Kmax

; ð43Þ

where Klocal is the local pointwise stress error estimation value, Kmax the maximum stress error estimation

value and Cs the normalizing factor. In Eq. (43), gð~xÞ is almost equal to Cs in the region where stress error

estimation value is very large. In contrast, gð~xÞ becomes nearly zero if the stress error is very small.

Therefore, the grids concentrate in the area where the stress error is relatively large. The detailed expression

of K is given at the end of this section.
This work shows linear application. It means that under the given weighting function (pointwise stress

error estimation value), the deformation cell mapping determines an improved mesh configuration. The

weight function should be repeatedly evaluated for the newly determined mesh configuration in order to be

a nonlinear iterative process. New adjusted mesh needs to be constructed successively until the weight

function becomes uniformly distributed in the domain. But this repeated process has not been done in the

this study [25,26].

Also, we calculate the relative percentage error to compare the errors of the solutions evaluated in the

uniformmesh and in the adjustedmesh, respectively [27]. The energy norm of the error of the finite element Ei,
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kekEi
¼

Z
Ei

rð
�

� rhÞTC�1 rð � rhÞdX
�1=2

ð44Þ

is approximated by the value kek�Ei
,

kek�Ei
¼

Z
Ei

r�ð
�

� rhÞTC�1 r�ð � rhÞdX
�1=2

; ð45Þ

where C is the material stiffness tensor, e the error of finite element solution, r the exact stress tensor, rh the

finite element stress and r� the improved finite element stress tensor.

If the exact stress r are not known, the improved finite element stress tensor r� must replace the un-

known exact stress tensor r. For evaluating the improved finite element stresses Zienkiewicz–Zhu�s least-
square-fit approach [28] were used in the present study.
Fig. 5. Example of cylindrical shell under concentrated loads (mesh configurations and contour of stress error estimation): (a)

magnitude of stress error estimation, (b) adjusted mesh in parametric domain, (c) uniform mesh on cylindrical shell and contour of

stress error estimation and (d) adjusted mesh on cylindrical shell and contour of stress error estimation.
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By summing up the energy contribution by each element, the energy error of the whole domain can be

obtained as follows:

kek�2 ¼
Xm
i¼1

kek�2Ei
: ð46Þ

The relative percentage error is defined as follows:

g ¼ kek�

kuk � 100 ¼

R
X r� � rhð ÞTD�1 r� � rhð ÞdX

h i1=2
R
X r

�TD�1r� dX
� 
1=2 ; ð47Þ

where u is the displacement.

The ith component of stress rp
i in a patch is interpolated as

rp
i ¼ pðx; yÞai; i ¼ 1; 2; . . . ;m; ð48Þ

where m is the number of stress components, pðx; yÞ is a vector of polynomials and ai is the set of unknown
coefficients for the ith component of stress. The coefficient ai are determined by solving the following

minimization problem:
Fig. 6. Convergence of estimated relative error for cylindrical shell under concentrated loads.
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min
Xn
k¼1

rh
i ðxk; ykÞ

� 
� pðxk; ykÞai

	2!
; ð49Þ

where n is the number of superconvergent stress points in the patch (SSP) and rh
i the ith component of stress

at SSP in the FE mesh. This linear least-square problem is solved using the following Euler equations:

Xn
k¼1

pTðxkÞpðxkÞai ¼
Xn
k¼1

pTðxkÞrh
i ðxkÞ: ð50Þ

After determining the vectors ai given by Eq. (50), the co-ordinates of the searched stress point are com-

bined with Eq. (49) in order to get the improved stress value at the nodes:

r�
i ¼ pðxnode;ynode; znodeÞai: ð51Þ
Fig. 7. Example of cylindrical shell under uniform internal pressure (mesh configurations and contour of stress error estimation): (a)

magnitude of stress error estimation, (b) adjusted mesh in parametric domain, (c) uniform mesh on cylindrical shell and contour of

stress error estimation and (d) adjusted mesh on cylindrical shell and contour of stress error estimation.
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Then, the pointwise stress error estimation value, K, is calculated for the examples in the next section.

K ¼ r�
i � rh

i : ð52Þ
5.1. Cylindrical shell

5.1.1. Cylindrical shell under concentrated loads

The first example is a pinched cylinder with rigid diaphragmed ends. Transverse loads in the radial

direction are applied at the mid-section of the cylinder (see Fig. 5(c)). The magnitude of the stress error

estimator evaluated in initial uniform mesh is shown in Fig. 5(a). Adjusted mesh in the plotting indicates the

results of the proposed r-method. Using the stress error estimator in the uniform mesh as a weight function,

the adjusted mesh can be constructed in the parametric domain ðh1; h2Þ such that the grids are concentrated

near the point in which the loads are applied without mesh tangling as shown in Fig. 5(b). Figs. 5(c) and (d)

show the mesh configurations, respectively, which were mapped onto the cylindrical shell surface by the

cylinder position vector. We can effectively diminish the error values where the point load is applied by
using a distorted adjusted mesh given by the moving grid method as shown in Fig. 5(d).

To assess the convergence rate of the proposed r-adaptive method and compare it to those of the

uniform refinements, the estimated relative error is calculated in each mesh configuration. Fig. 6 shows the

estimated relative error of a pinched cylinder under concentrated load. The x-axis indicates the number of

the elements for analysis and y-axis is the value of the estimated relative error in a logarithmic scale. As

shown in Fig. 6, the r-method shows a much faster convergence that the uniform mesh refinement. For

example, the results of the adjusted mesh with 144 elements show higher performance than the uniform

mesh with 256 elements.
Fig. 8. Convergence of estimated relative error for cylindrical shell under uniform internal pressure.
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5.1.2. Cylindrical shell under uniform internal pressure

The next example is for the cylindrical shell under uniform internal pressure. In Fig. 7(b), the refined

final mesh is shown and the consistent stress error estimation is as shown in Fig. 7(a). As shown in Figs. 7(a)
and (c), the value of stress error estimation is relatively large at both ends of the cylinder under uniform

internal pressure. Fig. 7(d) shows that the grid shrinks at both ends having large stress error and the stress

error decreases significantly after the grid shrinks.

The estimated relative error of the cylindrical shell under uniform internal pressure is depicted in Fig. 8.

Similar to the case under concentrated load, Fig. 8 also shows the relative error decreases when the adjusted

mesh by r-method is applied. Though the decreasing rate of relative error seems to be less than that of the
Fig. 9. Example of hemisphere under concentrated loads (mesh configurations and contour of stress error estimation): (a) magnitude

of stress error estimation, (b) adjusted mesh in parametric domain, (c) uniform mesh on hemisphere and contour of stress error es-

timation and (d) adjusted mesh on hemisphere and contour of stress error estimation.
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case under concentrated load, a considerable amount of improvement on the relative stress error with the

adjusted mesh by r-method is shown in Fig. 8.

5.2. Spherical shell

5.2.1. Spherical shell under concentrated loads

A doubly curved spherical shell example is given in this section. The equator of the shell is chosen as a

free edge. The problem reduces to a hemisphere with four point loads alternating in sign at 90� intervals
along the equator as shown in Fig. 9(c). This case is similar to the pinched-cylinder because the stress error

increases at the load points. The nodes are moving on the area that has a large stress error value, as shown

in Fig. 9(b). Because, the finite cell size decreases at the loaded point, the stress error also decreases.
Fig. 9(d) shows the improvement of the stress error estimation in the adjusted mesh configuration.

Figs. 9 and 10 show the mesh convergence for analyses in the adjusted mesh configuration. The solid line

connected by the triangular marks indicates the estimation of the relative error calculated from the uniform

mesh, and the solid line connected by the square marks is calculated from the adjusted mesh. The r-adaptive
method is more useful than the uniform refined method because it significantly decreases the solution er-

rors. From Fig. 10, it can be concluded that the r-adaptive method leads to higher accuracy than the

uniform mesh does.

5.2.2. Hemisphere under uniform internal pressure

The hemisphere under the uniform internal pressure is considered. Fig. 11(a) shows the magnitude of the

stress error estimator. The adjusted mesh in the parametric domain is shown in Fig. 11(b). The stress error

estimator calculated on the uniform mesh is depicted in Figs. 11(c) and (e). It is not easy to recognize how
Fig. 10. Convergence of estimated relative error for hemisphere under concentrated loads.



Fig. 11. Example of hemisphere under uniform internal pressure (mesh configurations and contour of stress error estimation): (a)

magnitude of stress error estimation, (b) adjusted mesh in parametric domain, (c) uniform mesh on hemisphere and contour of stress

error estimation, (d) adjusted mesh on hemisphere and contour of stress error estimation, (e) uniform mesh in parametric domain and

contour of stress error estimation and (f) adjusted mesh in parametric domain and contour of stress error estimation.
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large the stress error is because the mesh density near to the zenith (domain A) is so large. As shown in Figs.

11(c) and (e), the stress error is larger than at both upper and lower areas. Figs. 11(d) and (f) show the stress

error calculated on the adjusted mesh. As in the previous examples, the grids come together at the place of
high stress error value. In the adjusted mesh, the stress error value decreases. On the other hand, domain B

in Figs. 11(d) and (f) has a lower stress error in the initial mesh configuration than in the adjusted mesh, but
Fig. 13. The geometry of torus.

Fig. 12. Convergence of estimated relative error for hemisphere under uniform internal pressure.
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we are aware that the stress error value is raised in the adjusted mesh because of the expansion of the cell

size there. However, considering all these factors, the global stress error of the overall domain becomes

small.
Fig. 12 is the graph of the relative error of hemisphere under uniform internal pressure. The relative

error of adjusted mesh is lower than that of uniform mesh case.

5.3. Torus under uniform internal pressure

In this problem, the r-adaptive method is applied to a torus subjected to a uniform internal pressure. The

geometry of the torus is shown in Fig. 13. Because of the symmetry with respect to the plane XX in Fig. 13,

the analysis is carried out from 0� to 180�. As shown in Fig. 14, the grids are concentrated on the area where
Fig. 14. Example of torus under uniform internal pressure (mesh configurations and contour of stress error estimation): (a) magnitude

of stress error estimation, (b) adjusted mesh in parametric domain, (c) uniform mesh on torus and contour of stress error estimation,

(d) adjusted mesh on torus and contour of stress error estimation.
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there is a large stress error estimation value. Also, like previous examples, the stress error is reduced in the

adjusted mesh configuration. The result of relative error of torus is plotted in Fig. 15. But special attention

should be given so that the estimated relative errors calculated from the adjusted mesh with 64 elements and
100 elements are higher than those from the uniform mesh. The torus has saddle points, where the sign of

the Gaussian curvature suddenly changes. That is, the torus is sensitive to the mesh distortion near the apex

line where the sign of the Gaussian curvature changes.

Thus the measure of mesh distortion and the weight function of cell deformation mapping is modified to

consider both effects from the stress error and from the mesh distortion. In the subsequent section, the error

measure of the mesh distortion is discussed and the weight function for error estimation is modified.

5.3.1. Distortion measure

Let l : M ! N be a mapping from surface M to surface N . X and x denote the local coordinates on M
and N , respectively. To find the distortion measure, we consider a symmetric positive semi-definite qua-

dratic form

Q ¼ FTHFG�1; ð53Þ

where H and G are a first fundamental form on M and N , respectively, and Fð¼ ox
oXÞ is a deformation

gradient matrix. Its eigenvlaues and eigenvectors define an ellipsoid. The distortion measure can be ob-

tained by using the ratio of the maximum to minimum eigenvalue of Q such as

D ¼ kmax

kmin

; ð54Þ
Fig. 15. Convergence of estimated relative error for torus under uniform internal pressure.
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where kmax and kmin are the maximum and minimum of eigenvalues of Q. If kmax ¼ kmin then ellipsoid is a

perfect circle, which implies no distortion.

Reflecting the mesh distortion effect, the weight function can be written as similar to Eq. (43):

1

f ð~xÞ

 
� 1

!
distortion

¼ Cd � Dmax

Dlocal

; ð55Þ

where Cd is a normalizing factor.
Fig. 16. Convergence of estimated relative error for torus under uniform internal pressure (considering stress error estimation and

mesh distortion measure).
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In order to consider the effect of mesh distortion as well as that of the relative stress error, the weight

function is reconstructed for the parameter study:

1

f ð~xÞ

 
� 1

!
total

¼ 1ð � aÞ 1

f ð~xÞ

 
� 1

!
stress error

þ a
1

f ð~xÞ

 
� 1

!
distortion

; ð56Þ

where a is a parameter which varies from 0 to 1. Mesh distortion part in Eq. (56) prevents grids from

excessively concentrating in the region where the value of the stress error estimation is high (see

Fig. 17). Using Eq. (56), the relative error of the torus under uniform internal pressure is depicted in
Fig. 16 as the parameter a varies. Also, the logarithmic relative errors are shown in Table 1. In this

table, the bold numbers indicate the smallest relative error among the values of error estimators for a

fixed number of elements. Fig. 16 and Table 1 show that the relative error oscillates and varies

abruptly in some cases as the parameter value a changes. For instance, in 100 elements, the relative

errors in the uniform mesh are the same as those in the adjusted mesh (a ¼ 0:0) which considers only

stress error estimation. Also, there is a large difference between the relative error of a ¼ 0:0 and that

of a ¼ 0:1.
As shown in Fig. 16 and Table 1, it is not easy to select the proper fixed parameter a. But since the

computational cost is low for the grid generation including mesh distortion effect, the proper parameter can

be selected by the parametric study of relative stress errors with the variation of a. For example, it takes

only about 10 s to generate a grid with 100 elements. Fig. 17 shows the mesh configuration of a torus under

uniform internal pressure as parameter a is changed in increments of 0.1. Fig. 17(a), a ¼ 0:0, are the ad-

justed mesh excluding mesh distortion. As parameter a increases, the grids turn back to the initial uniform

position.

To compare the sensitivity of the mesh distortion effect of the torus with that of the hemisphere, the

convergences of estimated relative errors for the spherical shell subject to uniform internal pressure in the
uniform mesh, adjusted mesh 1, and adjusted mesh 2, respectively, are compared in Fig. 18. Adjusted

meshes 1 and 2 are constructed by using the weight function given in Eqs. (43) and (56), respectively. As

shown in Fig. 18, there was small difference in relative errors. This means that the spherical shell problem is

less sensitive to mesh distortion than the torus is. Therefore, the effect of mesh distortion does not need to

be considered seriously for a hemisphere.
Table 1

Example of torus – relative error log kek=kukð Þ and number of element for different value of a

Number of element: 16 36 64 100 144 169 256

Uniform mesh )1.359 )1.935 )2.193 )2.310 )2.460 )2.646 )2.819
a ¼ 0:0 )1.540 )2.186 )2.116 )2.310 )2.712 )2.967 )3.014
a ¼ 0:1 )1.533 )2.205 )2.141 )2.575 )2.678 )2.920 )3.049
a ¼ 0:2 )1.521 )2.210 )2.176 )2.597 )2.654 )2.868 )3.057
a ¼ 0:3 )1.504 )2.199 )2.217 )2.624 )2.640 )2.821 )3.038
a ¼ 0:4 )1.482 )2.175 )2.264 )2.654 )2.638 )2.785 )3.002
a ¼ 0:5 )1.457 )2.140 )2.312 )2.687 )2.646 )2.760 )2.961
a ¼ 0:6 )1.431 )2.097 )2.352 )2.718 )2.665 )2.746 )2.922
a ¼ 0:7 )1.406 )2.050 )2.371 )2.737 )2.694 )2.742 )2.890
a ¼ 0:8 )1.385 )2.000 )2.362 )2.735 )2.732 )2.749 )2.865
a ¼ 0:9 )1.369 )1.951 )2.325 )2.705 )2.774 )2.764 )2.848



Fig. 17. The mesh configuration of torus under uniform internal pressure according to the change of parameter a.
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Fig. 18. Convergence of estimated relative error for hemisphere under uniform internal pressure (considering stress error estimation

and mesh distortion measure).
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6. Conclusion

To compare the convergence rate of the proposed r-adaptivity method to those of the uniform refine-

ments, cylinder, sphere and torus problems were studied. To prevent a surface geometry error, the shell
surface geometry is exactly represented by B-spline surface tensor patch, which are commonly used in CAD

systems. Also, we employed a high performance nine-noded shell element, which is less sensitive to mesh

distortion than a four-noded shell element is. The r-adaptivity, used in this study, starts from initial uniform

mesh and the grids are concentrated in the desired region without any grid tangling. In order to determine

the desired region, the value of the stress error estimator computed in a uniform mesh is used as the weight

function. By using the grids that are concentrated on the relatively high stress error region, the accuracy of

solution is improved. Also, the stress error of the adjusted mesh performs better than that of the uniform

mesh configuration in the numerical examples. However, in the torus example, the effect of mesh distortion
make the estimated relative error larger than that of uniform mesh. Thus, the severe mesh distortion was

prevented by considering the mesh distortion measure as a part of the weight function of cell deformation

mapping. A properly chosen parameter value improves the stress performance.
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